農業と科学 11

施設野菜の生産環境における

省エネルギー対策展望

農林水産省野菜振興課 課 長 補 佐 ・生産班長

太田成美

1. はじめに

わが国における施設野菜の面積(ガラス室・ハウス設置面積)は、昭和48年秋の石油危機以降、その伸び率が48年以前に比べてかなり低下し、その動向が注目されていたが、52年の面積は21,727haと50年に比べて11.6%の堅実な増加を示している。

主要施設野菜 9 種類(きゅうり、かぼちゃ、なす、トマト、ピーマン、いちご、温室メロン、すいか、レタス)について、施設ものの生産割合(51年)をみると、作付面積で16.4%、収穫量で26.3%を占めており(表1)、施設野菜の生産の確保は、国民消費生活の安定向上を図る上で重要なことである。

一方、石油危機以降、省資源・省エネルギー対策が各方面で強調されるようになり、施設野菜についても、加温用石油を多量に消費しているのではないか、という意見がみられ、その対策が求められている。

実態としては、施設野菜の面積 21,727ha のうち、加温面積は 9,099ha (加温割合41.9%) であり、使用される暖房用石油の量は 750 千 $k\ell$ と推定され、この量は、わが国で年間使用される石油総量のわずか0.3 \sim 0.4%程度にすぎない。

このように国全体からみれば、わずかな使用量で、国 民の食生活の安定に大きな役割を果しているのであるが、施設野菜の生産費に占める光熱動力費の割合は、第 2表のとおり作物間に差はあるものの、かなりのシェア ーを占めており、48年以降その割合も高くなっている。 更に、施設野菜の需要は今後とも伸びるものと思われるが、価格はより安定的に推移すると考えられるため、施設野菜生産においても、生産性の向上および経営の安定を図る上で石油消費の節約、合理化等生産形態の改善を図る必要がある。

2. 生産環境の省エネルギー対策

施設野菜の生産環境における省エネルギー対策については、試験研究機関をはじめ、各方面で検討が行われているが、その内容は第一に、エネルギーの節約と有効利用であって、次のような対策が研究されている。

まず,栽培管理の改善については,耐低温性品種の育成および導入,耐低温性台木の育成および導入,温度管理に関する変温管理の導入,栽植密度の変更,整枝,摘葉等による日射利用度の向上,積算日射量の多寡に応じ

た複合環境制御方式の導入等であっ て、これらの幾つかは、すでに実用 化段階に入っている。

特に日射量に応じた制御は、光合 成を植物生育最適な形で行わせるこ とが可能であり、従来方式の制御に 比べ、トマトでは暖房機稼動時間が 22%の節減,収量16%の増加と,省 エネルギーと同時に増収, 品質向上 に結びついており、画期的な方法と して注目されている。

次に、施設・装置の改善については、受光量の増大を 図るための施設構造,棟の方位等に関すること,熱質流 率の低減を図り暖房効率を高めるための多層被覆熱線反 射性フィルムの活用に関すること。輻射熱の遮断を行う ためのペレットハウス, 発泡ハウスの実用化に関するこ と。暖房装置の効率を向上させるための排熱 回 収 装 置 (節油機,煙突の横引等)の効果,適正なダクトの本数 と長さ、配管方法や温湯循環方法、ボイラーの運転法に 関すること。温室の除湿を行う際、室内の空気と外気と の熱交換を行い温室内の高温乾燥化を図るための、除温 換気装置の導入に関すること等の検討が行われており, 多層被覆の実用化(一層被覆はハウスで31%普及),暖 房機の熱効率の向上(燃料節減率約11%),ペレットハ ウスの実用化等多くの成果がみられる。

第2に,太陽エネルギーの効率的利用については,昼 間太陽エネルギーを効率的に土壌、水、石等に蓄熱し、 夜間放出させて温室の暖房あるいは保温効果をねらった 地中熱交換ハウス、水枕状の蓄熱マルチの検討が行われ ている。地中熱交換ハウスについては、以前から研究が 行われているが、最近、神奈川県園芸試験場において、 夜間常にハウス内最低気温10℃(目標温度)を維持し、

表 2 生産費に占める光熱動力費の割合 (10a当り)

区分	第1次生産費 (A)		左のう 動力費	割 合 (B)/(A)		
種別	48年	51年	48年	51年	48年	51年
冬春きゅうり (ハウス 促 成)	四 844,769	円 1,440,897	円 48,058。	円 144,425	5.7	10.0%
冬春きゅうり (ハウス半促成)	827,703	1,771,847	88,026	297,859	10.6	16.8
冬春トマト (ハウス 促 成)	622,459	1,068,097	73,433	62,942	11.8	6.0
冬春トマト (ハウス半促成)	569,043	1,136,161	45,496	105,856	8.0	9.3
冬春なす (ハウス 促成)	1,051,738	1,782,740	4,776	. 44,519	0.5	2.5
冬春なす (ハウス半促成)	1,078,049	1,877,966	78,872	101,757	0.7	0.5
冬春ピーマン (ハウス 促 成)	997,768	1,940,295	188,503	507,088	18.9	26.1

(資料) 農林水産省野菜生産費調査

表 1 野菜生産に占める施設野菜の割合(51年)

	作付面積(ha)			収 穫 量 (t)			
	合 計	うち施設	施設割合	合 計	うち施設	施設割合	
きゅうり	25,700	6,239	24.3%	990,000	408,820	41.3%	
かぼちゃ	13,800	296	2.1	230,100	11,600	5.0	
なす	21,800	1,570	7.2	623,400	113,316	18.2	
トマト	18,100	4,111	22.7	898,700	284,100	31.6	
ピーマン	4,190	980	23.4	142,500	78,816	55.3	
いちご	11,700	6,210	53.5	164,700	114,108	69.3	
温室メロン	867	867	100.0	26,700	26,700	100.0	
すいか	35,500	3,421	9.6	1,113,600	132,623	11.9	
レタス	14,300	192	1.3	279,400	3,822	1.4	
計	145,957	23,886	16.4	4,469,100	1,173,905	26.3	

(資料)農林水產省野菜生產出荷統計

また、日中のハウス内最高気温を25℃に抑えるには、熱 交換パイプ本数が不足したが、パイプの本数 を 増や せ ば、温度維持は可能だという報告が行われている。

第3に、未利用資源の利用については、温室の暖房エ ネルギーに都市ごみ、もみがら、おがくず、廃油、工場 廃熱等の廃棄物の燃焼熱を利用する方法,温泉,地熱発 電所から発生する熱水等の火山性熱水利用方法、非火山 性の深層熱水を利用する方法等について, 検討が行われ ている。

都市ごみ燃焼熱利用については、豊橋市において多目 的利用の一環として,温室団地の設置が進められてお り、札幌市においても検討が進められている。火山性熱 水利用については, すでに北海道森町では施設野菜に利 用しているが、同町では更に地熱発電所の熱水を利用し た大型団地の設置を計画している。

また、風力利用についても研究が進んでいるが、風エ ネルギー利用の中心システムである風車については、構 造面,経済性の面で開発要素を多々有しており、当面施 設野菜への利用は困難と思われる。

3. 施設野菜省エネルギー団地の誘導

以上のような成果をふまえ、施設野菜の生産形態を省

エネルギー生産形態へ誘導するた め,施設野菜省エネルギーモデル団 地の設置について、54年度に予算要 求を行っているところである。その 内容は次の6種類(型)としてい る。① 複合環境制御型,② 地中 熱交換型(地中熱交換ハウス), ③ 輻射熱遮断型 (ペレットハウス), ④ 都市ごみ燃焼熱利用型,⑤ も みがら燃焼熱利用型,⑥ 火山性地

熱水利用型で, 現段階で実用化にふ みきれるものを要求している。